网络赌博网站平台-揭秘网络赌博_手机百家乐游戏_全讯网七星娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

永利高百家乐官网进不去| 开心8百家乐官网游戏| 钱隆百家乐大师| 什么棋牌游戏能赚钱| 百家乐官网赌博技巧网| 乐天堂百家乐赌场娱乐网规则| 竹溪县| 电子百家乐官网作假| 百家乐大路小路三珠路| 网络博彩网| 百家乐单机游戏免费| 镇远县| 网络百家乐大转轮| 亚洲百家乐官网新全讯网| 有钱人百家乐的玩法技巧和规则| 百家乐官网游戏算牌| 百家乐闲和庄| 太阳城百家乐官网怎样开户| 线上百家乐手机版| 沽源县| 百家乐空调维修| 永胜博| 88娱乐城址| 属虎和属猴牛人做生意| 在线博彩网| 百人百家乐软件供应| 百家乐官网最佳下注方法| 百家乐轮盘桌| 网上赌百家乐官网被抓应该怎么处理| 百家乐怎打能赢| 百家乐官网开户博彩论坛| 大发888玩哪个| 一筒百家乐官网的玩法技巧和规则 | 皇冠开户| 百家乐筹码500| 百家乐官网投注技巧| 澳门百家乐长赢打| 百家乐官网真人现场| 百家乐官网赌博是否违法| bet365体育在线投注 jxhymp| 百家乐赌场代理|