网络赌博网站平台-揭秘网络赌博_手机百家乐游戏_全讯网七星娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

數學與統計學院"21世紀學科前沿"系列學術報告預告

Second-order Least Squares Method for High-dimensional Variable Selection

編輯: 數學學院 董學敏 時間:2015-06-01
報告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報告時間:2015年6月2日下午3:00-4:00
報告地點:良鄉1-208
報告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
华硕百家乐官网的玩法技巧和规则| 百家乐官网路单用处| 百家乐平台哪个有在线支付呢| 全讯网备用| 百家乐官网如何制| 关于阳宅风水24山知识| 威尼斯人娱乐城易博lm0| 衢州市| 百家乐赌场娱乐| 网络百家乐官网的信誉| 大发888贴吧| 百家乐真人投注网站| 百家乐官网玩法与规则| 百家乐官网大路小路| 百乐坊百家乐娱乐城| 钱隆百家乐官网软件| 澳门百家乐博| 百家乐官网英皇娱乐城| bet365最快最稳定| 电玩百家乐官网的玩法技巧和规则| 百家乐庄闲出现几| 24山向水法吉凶断| 百家乐官网真人百家乐官网皇冠开户| 大发888百科| 月华百家乐官网的玩法技巧和规则| tt娱乐城官方网站| 风水24山子怎么读| 如何玩百家乐官网扑克| 大发888体育注册| 巴厘岛百家乐官网娱乐城| 百家乐官网官网下载| 青鹏棋牌游戏大厅v3.0| 梦幻城百家乐的玩法技巧和规则 | 娱乐城开户送彩金| 百家乐园搏彩论坛| 大发888游戏下载官方| 网上百家乐分析软件| 百家乐官网视频小游戏| 大发888下载亚洲城| 利都百家乐国际娱乐| 金城百家乐玩法|