网络赌博网站平台-揭秘网络赌博_手机百家乐游戏_全讯网七星娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
百家乐官网注册开户送彩金| 百家乐台布哪里有卖| 福鼎市| 香港六合彩号码| 百家乐官网送钱平台| 至富百家乐的玩法技巧和规则| 百家乐官网网上真钱麻将| 大赢家百家乐官网66| 网页百家乐官网游戏下载| 百家乐看图赢钱| 大世界娱乐| 阳宅24方位座向| 威尼斯人娱乐城 老品牌值得信赖| 大发888娱乐城 真钱下载| 大发888真钱娱乐| 至尊娱乐| 欢乐谷百家乐官网的玩法技巧和规则 | 百家乐庄闲赢负表| 做生意的门的方向| 永利高百家乐开户| 百家乐官网压分规律| 百家乐金海岸娱乐| 莆田棋牌迷游戏中心| 百家乐官网技巧之微笑心法| 真人百家乐官网皇冠网| 长春百家乐的玩法技巧和规则| 百家乐官网稳赢投注方法| 钱柜百家乐官网的玩法技巧和规则 | 新时代百家乐的玩法技巧和规则| 云鼎娱乐城优惠活动| 百家乐官网单机游戏下| 杨筠松 24山 土| 大发888娱乐游戏充值| 赌百家乐官网波音备用网| 钱百家乐取胜三步曲| 百家乐官网最好的玩法| 免佣百家乐官网赌场优势| 百家乐事一箩筐的微博| 怎样打百家乐官网的玩法技巧和规则| bet365娱乐场下载| 百家乐单打|