网络赌博网站平台-揭秘网络赌博_手机百家乐游戏_全讯网七星娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网的路图片| 澳门百家乐官方网站| 百家乐讲坛汉献| 金沙百家乐官网现金网| 百家乐高科技| 百家乐官网游戏开发软件| 赌场百家乐打法| 百家乐官网澳门色子| 大发888娱乐下载网址| 百家乐官网小揽| 大发888官方下| 24山之巽山乾向水法及兼家分针| 竹北市| 百家乐庄闲偏差有多大| 百家乐官网双峰县| 建昌县| 新全讯网777| 真人百家乐娱乐好玩| 网络百家乐官网内幕| 冠通棋牌世界| 足球心水论坛| 广发百家乐的玩法技巧和规则 | 百家乐存在千术吗| 河源市| 飞7棋牌游戏| 大发888资讯网| 百家乐电子游戏试| 乐宝百家乐娱乐城| 网上百家乐官网赌| 粤港澳百家乐官网娱乐平台| 网上百家乐官网骗人| 大发888娱乐城娱乐城| 百家乐游戏机在哪有| 24山入门| A8百家乐官网娱乐网| 塑料百家乐官网筹码| 百家乐官网视频游戏会员| 西青区| 崇左市| 百家乐官网美女真人| 涿鹿县|