网络赌博网站平台-揭秘网络赌博_手机百家乐游戏_全讯网七星娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

新大发888娱乐城| 金塔县| 百家乐赌场凯时娱乐| 大发888博彩官方下载| 投真钱百家乐官网必输吗| 欧洲百家乐官网的玩法技巧和规则 | 大玩家百家乐的玩法技巧和规则 | 真人百家乐官网技巧| 怎样玩百家乐赢钱| 澳门顶级赌场金鹰娱乐| 百家乐博彩网址| 宜丰县| 网上玩百家乐犯法| 百家乐官网赌博平台| 凯斯网百家乐的玩法技巧和规则| 百家乐官网出千原理| 尊龙娱乐网| 百家乐分析绿色版| 波音开户| 文安县| 百家乐赢钱秘籍鹰| 百家乐官网生活馆拖鞋| 大发888娱乐真钱游戏 官方| 帝王百家乐官网全讯网2| 诺贝尔百家乐的玩法技巧和规则| 百家乐官网投注规则| 百家乐这样赢保单分析| 赌博百家乐官网玩法| 御匾会百家乐的玩法技巧和规则 | 百家乐官网金海岸娱乐| 百家乐娱乐全讯网| 赌博百家乐官网的路单| 百家乐旺门打法| 百家乐官网大钱赢小钱| 大发888下载安全的| 百家乐赢钱心得| 太阳城百家乐官网外挂| 大发888 大发国际| 海立方娱乐城| 网页百家乐的玩法技巧和规则| 累积式百家乐官网的玩法技巧和规则 |